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Propagation of Electromagnetic Waves in a Random 
Medium and Nonzero Rest Mass of the Photon 

Sisir Roy 1, G. Kar, t and M. Roy t 

Received May 29, 1995 

The propagation of electromagnetic waves is studied in a Maxwell vacuum with 
tr :# 0. The photon loses energy during its propagation through this vacuum. 
This dissipation of energy is related to the fluctuation of the refractive index of 
the underlying vacuum. There exists a bounded and unique solution in the limit 
o" ---> 0 in the asymptotic region. The geometric structure of the background 
space-time is Finslerian in nature. 

1. I N T R O D U C T I O N  

Maxwei l ' s  equations have been studied (Vigier, 1990) in a vacuum with 
nonzero conduct ivi ty  coefficient, i.e., with tr ~ 0. The nonzero conductivi ty 
coefficient gives rise to a dissipative term in the field equation. In this case 
if we consider  the propagation of  a photon through this type o f  vacuum, the 
photon acquires a mass at cosmological  scale (Fulli, 1975; de Broglie and 
Vigier, 1972; Marochnik,  1968; Kar et  al., 1993). In fact, due to the presence 
of  the dissipative term in the field equation, the photon loses energy during 
the propagation through this vacuum. This dissipation can be related to the 
fluctuation o f  the refractive index of  the underlying vacuum. In this paper 
we study the wave equation with random refractive index and show that 
there exists a bounded and unique solution o f  this wave equation for small 
cr at r ~ oo. This is consistent with the conclusion drawn by Vigier (1990). 
In this model  o f  a fluctuating vacuum, the velocity of  propagation o f  the 
disturbance, i.e., the phase velocity, is shown to be finite and no superluminal 
transmission is allowed. In Section 2 we briefly discuss the Maxwell  equations 
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in vacuo with cr ~ 0. This gives rise to a Finslerian structure of  the vacuum 
as considered by Synge (1966). This is discussed in Section 3. 

2. M A X W E L L ' S  E Q U A T I O N S  I N  V A C U O  W I T H  Gr ~ 0 

I f  we endow the vacuum with nonzero conductivity coefficient cr :/= 0, 
Maxwell 's  equations can be written in the form 

div E = 0 

aE 
curl H = (rE + eoXe 3t 

(1) 
div H = 0 

OH 
curl E = - IZ0Xm - -  

3t 

where e0 denotes the vacuum's  dielectric constant, i.L0 denotes the vacuum's  
permeability constant, Xe is the relative dielectric constant, and X,, is the 
relative permeability constant. Again, 

V x V x E = -~72E 

SO, 

V2 E _ eoXeXm O2E 0E 
c 2 0~- + (rl't~ 0---t- (2) 

If  we consider plane waves in the z direction, i.e., 

H ~ = b _  _ exp i~ t -  
�9 \ ~ O X m /  

(3) 

then, putting q = l /v in the plane-wave solution of  E in equation (2), we get 

q2 = XeXm ( icr ) 
c2 1 eo-~o~ %1-~o (4) 

Here, q can be considered as complex in nature, having the form a - i[3, 
where oL and 13 are real and given by 
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o t = l + g  ~-~+ 

1 0 -2 1 
132 _ 2 2 2 oj2 (6) 

E-0Xe 

for (cr/to) ~ 0. 
Then the velocity defined by v in equation (4) will give rise to a complex 

refractive index ~1 in the vacuum. The velocity v = 1/ct is the phase velocity 
of propagation of  the disturbance through the underlying vacuum. Henceforth, 
it will be denoted as ve. After a simple calculation (Fulli, 1975; de Broglie 
and Vigier, 1972; Marochnik, 1968; Kar et al., 1993), the phase velocity can 
be written as 

1 o .2 
(7) 

and the group velocity as 

1 cr 2 ~u/2 
vg='q 1 +~ ~ (8) 

It is clear from the relation (7) that the phase velocity will be finite and less 
than c (for "q < 1). So, the velocity of propagation of  the disturbance will 
be finite and no superluminal transmission is allowed in this vacuum. This 
might play a significant role in quantum mechanics. 

Taking the above calculated values of ot and 13 in Ex and Hy, the two 
following cases may arise: 

(i) Plane waves are progressively damped with the decay factor exp(-kz) ,  
where k = to13. 

(ii) The velocity of propagation of the wave is given by vg and it varies 
with the frequency. 

Using the de Broglie relation 

E - m~c2 
(1 -- c2) 1/2 

we get 

h 2 0-2 
m2 = h2c02(l _ ~2) 4 (~oXe)2~ 2 (9) 
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For complex refractive index, say . q 2  = _ 1, and at low frequency, 

h(r hH 
~ - -  ~ - - =  10-65 

m v 2(~0Xe)'q 2c 2 g (10) 

where H is the Hubble constant. 
Vigier got exactly the same mass m.~ as we have in (10). But, in general, 

m.~ depends on the frequency, as is evident from (9). It is now clear from 
the above analysis that the progressive waves will be heavily damped for 
complex refractive index of the vacuum and we get the nonzero rest mass 
of the photon. This dissipation can be related to the fluctuation of the medium, 
which can be characterized by a random refractive index. It can be envisaged 
in the following way. Starting with equation (2) and taking the time-dependent 
part of E, we get 

. 9k~ V2E + t• 6X,,,Xe + il-%X,.crko) E = 0 (11) 

Now, 

-q = (~oeo) In 

or  

IX0 = TI2/IE0 

Then equation (11) becomes 

X,,,ko(r 
V2E + "q2k~XmXeE + i 'q 2 E = 0 (12) 

t0 

Here. TI 2 is supposed to be a random function. Let xl 2 = 1 + ~(to, r); then 
equation (12) gives 

(1 + Ix)X,,,(rko 
VZE + (1 + Ix)k~x,.x~E + i E = 0 (13) 

to  

Equation (13) is a random differential equation having the random coefficient 
of E. Several authors have already studied the wave equation with random 
refractive index (Frisch, 1964) in the form 

V20 + k(](l + Ix(to, r))~ = 0 (14) 

where ~q2 = 1 + ix(to, r) is the refractive index. By replacing ko by k0 + ixl 
(~q > 0), it has been shown (Frisch, 1964) that equation (14) has bounded 
and unique solution in the asymptotic region (i.e., r --) ~). This holds for 
small values of rl, i.e., "q --> 0. Then equation (14) can be written as 

V2O + /~(1 4- ix)0 4- 2i'qk0(l + tx)~ = 0 (15) 

Now comparing equation (13) with (15), we can write 
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"q ~- • (16) 

Since the bounded solution exists for "q ~ 0, o- should be very small. Hence, 
equation (13) has a bounded and unique solution in the asymptotic region 
for cr --> 0. In fact, the introduction of k0 + i'q instead of k0 in equation (14) 
implies the introduction of  small dissipation during the propagation of a wave 
in a medium with random refractive index. So we can associate the dissipation 
of the energy of  a photon in a Maxwell vacuum (or v ~ 0) with a fluctuating 
vacuum which can be characterized by a random refractive index. 

3. F INSLERIAN S T R U C T U R E  OF VACUUM 

If the vacuum is endowed with random refractive index "q, then we get 
the following dispersion relation in a covariant form: 

[Ikl  2 - ~12~]Ao.(k) = tx go.~ + ~ uo.u ~ J~(k)  (17) 
c "q" 

with 

k = (k, k0), J o. = (0, ~E) 

AO. = (A, i ~ )  

and u = (0, 1), which is unit timelike vector denoting the velocity of the 
medium, tr denotes the conductivity of the medium. It is evident from (17) 
that I A I ~s 0, but ~ = 0 for cr ~ 0, which is nothing but the usual Coulomb 
gauge. The condition AO.A~ = 0 is not consistent with the usual Coulomb 
gauge. So it seems that the gauge principle has to be reinterpreted for my g: 
0 with cr ~ 0 in the vacuum. It has been shown (Roy, n.d.) that the nonzero 
rest mass of the photon with cr :/: 0 is consistent with gauge invariance of 
the first and second kind if we introduce the fourth component of the current 
as J0 - B0 (instead of  zero), where B0 is the magnetic flux density associated 
with a single photon (Evans, 1994). From (17) we construct an effective 
metric tensor of the background metric tensor go.~ as 

.~2_ I 
Go.~ = go.~ + .q2 u~u~ (18) 

By taking the average of the random refractive index, we obtain the average 
metric tensor 

m 2 -  1 
G o." = g~'" + m2 UO.U v (19) 
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where (l/'rl 2) = l]m 2, ( , )  being the statistical average. 
This form of the metric tensor G.~ has been discussed by Synge (1966) 

in studying the gravitational and electromagnetic fields on the generalized 
Lagrange space in dispersive as well as in nondispersive media from the 
point of view of  relativistic geometrical optics. Synge considered a generalized 
metric tensor g~v as 

g~v(x, V(x)) = F~(x)  + 1 n2(x,-V(x)) 

where Vi(x) is the velocity field of the medium. 
The medium IX = [M, V(x), n(x, V(x))] is called a dispersive medium 

where M is the manifold and n(x, V(x)) is the refractive index. If OnlOV = 
0, then Ix is called a nondispersive medium. If lln 2 = 1 - (1/c2), then g~v(x, 
V(x)) is reduced to the metric ( F ~  + (11c2)y~u which was considered by 
Miron and Kawaguchi (1991). It is easy to check that 

g~(x, V)g"~(x, V) = B~ (21) 

In our framework, the metric tensor constructed by averaging over the refrac- 
tive index should be the metric tensor for a nondispersive medium since Om/ 
Ou = 0. So, the metric of the Maxwell vacuum with o" :~ 0 should be 
Finslerian in nature. If n -- 0, it reduces to the Riemannian structure. For 
n = 1 we get the usual Maxwell vacuum where the photon does not lose 
energy during its propagation. 

4. C O N C L U S I O N  

It is evident from the above analysis that a geometrical structure of  the 
Maxwell vacuum with tr :# 0 can be constructed which gives rise to nonzero 
mass of the photon as it propagates through the vacuum. This may give rise 
to new insights regarding the interpretation of  the anomalous redshift at the 
cosmological scale. These issues will be studied in subsequent publications. 
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